

In the previous video, we've learned about the notion of limit and how to find it graphically.

In this video we will learn how to find it by calculation.

Given:
$$\lim_{x \to a} f(x) = 1$$
 and $\lim_{x \to a} g(x) = 1'$ (a, 1 and 1' can be ∞ or a real number)

If
$$l$$
; $l' \in IR$

$$l + l'$$

If
$$l \in IR$$
 and $l' = \pm \infty$ $l \pm \infty = \pm \infty$

$$l \pm \infty = \pm \infty$$

If
$$l = l' = +\infty$$

$$+\infty + \infty = +\infty$$

If
$$l = l' = -\infty$$

$$-\infty - \infty = -\infty$$

If
$$l = +\infty$$
; $l' = -\infty + \infty - \infty$

$$+\infty-\infty$$

indeterminate form

$$\lim_{x \to a} (f(x) + g(x)) =$$

Operations on the limits

$$\lim_{x \to a} (f(x) \times g(x)) =$$

If
$$l : l' \in IR^*$$

$$l \times l'$$

If
$$l \in IR$$
 and $l' = \pm \infty$

$$l \times (\pm \infty) = \pm \infty$$

If
$$l = l' = +\infty$$

$$(+\infty) \times (+\infty) = +\infty$$

If
$$l = l' = -\infty$$

$$(-\infty) \times (-\infty) = +\infty$$

If
$$l = +\infty$$
; $l' = -\infty$

If
$$l = +\infty$$
; $l' = -\infty$ $(+\infty) \times (-\infty) = -\infty$

If
$$l = 0$$
; $l' = \pm \infty$

$$0 \times (\pm \infty)$$

indeterminate form

Operations on the limits

$$\lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) =$$

If
$$l$$
; $l' \in IR^*$

If $l \in IR$ and $l' = \pm \infty$

$$\frac{l}{\pm \infty} = 0$$

If $l = \pm \infty$ and $l' \in IR$

$$\frac{\pm \infty}{l'} = \pm \infty$$

If $l = l' = \pm \infty$

$$\frac{\pm \infty}{l} = 0$$

If $l = 0$; $l' \in IR^*$

$$\frac{0}{l'} = 0$$

If $l = l$; $l' = 0$

$$\frac{l}{0} = \pm \infty$$

If $l = l' = 0$

of indeterminate form

Operations on the limits

$$\lim_{x \to a} kf(x) = k \lim_{x \to a} f(x) = kl$$

$$\lim_{x \to a} (f(x) \pm k) = \lim_{x \to a} f(x) \pm k = l \pm k$$

$$\lim_{x \to \pm \infty} \frac{k}{f(x)} = \frac{k}{l} \quad ; \quad l \neq 0$$

$$\lim_{x \to \pm \infty} \sqrt{f(x)} = \sqrt{l} \; ; \; l \ge 0$$

Why indeterminate forms???

$$(+\infty-\infty)$$
 or $(-\infty+\infty)$

We don't know the exact value of $+\infty$ or $-\infty$

$$0 \times (\pm \infty)$$

We don't know which rule it follows: 0 \times anything is 0 Or Number $\times \infty$ is ∞

Why indeterminate forms???

 $\frac{0}{0}$

We don't know which rule it follows:

$$\frac{0}{number} \text{ is } 0$$
Or
$$\frac{number}{0} \text{ is } \infty$$

We don't know the exact value of $+\infty$ or $-\infty$ so the answer can be 1, -1 or less than 0 or more than 0...

How to find limit at infinity by calculation?

Information to be used:

$$\lim_{x \to +\infty} x = +\infty$$

$$\lim_{x\to -\infty} x = -\infty$$

$$\lim_{x \to +\infty} x^n = +\infty$$

$$\lim_{x \to -\infty} x^n = \begin{cases} +\infty & \text{if n is even} \\ -\infty & \text{if n is odd} \end{cases}$$

 $\lim_{x\to +\infty} kx^n = \pm \infty$ according to the sign of the real number k and whether n is

even or odd

• If f is a polynomial:
$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$$

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} a_n x^n$$
 Leading term of f

$$\mathbf{1}f(x) = 2x + 3$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} 2x = 2(+\infty) = +\infty$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} 2x = 2(-\infty) = -\infty$$

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} a_n x^n$$

$$2f(x) = -2x + 3$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} -2x = -2(+\infty) = -\infty$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} -2x = -2(-\infty) = +\infty$$

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} a_n x^n$$

$$3f(x) = 3x^2 + 4x - 5$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} 3x^2 = 3(+\infty)^2 = 3(+\infty) = +\infty$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} 3x^2 = 3(-\infty)^2 = 3(+\infty) = +\infty$$

• If f is a polynomial:
$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$$

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} a_n x^n$$

$$4f(x) = -3x^2 + 4x - 5$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} -3x^2 = -3(+\infty)^2 = -3(+\infty) = -\infty$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} -3x^2 = -3(-\infty)^2 = -3(+\infty) = -\infty$$

How to find limit at infinity by calculation?

• If f is a polynomial:
$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$$

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} a_n x^n$$

$$\mathbf{5}f(x) = -x^3 - 5x^2 + 1$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} -x^3 = -(+\infty)^3 = -(+\infty) = -\infty$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} -x^3 = -(-\infty)^3 = -(-\infty) = +\infty$$

How to find limit at infinity by calculation?

4 If f is a rational:
$$f(x) = \frac{P(x)}{Q(x)}$$

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{\text{leading term of } P(x)}{\text{leading term of } Q(x)}$$

$$\mathbf{1}f(x) = \frac{x^2 + 1}{2x + 3} \qquad \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^2}{2x} = \lim_{x \to +\infty} \frac{x}{2} = \frac{+\infty}{2} = +\infty$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x}{2} = \frac{-\infty}{2} = -\infty$$

• If f is a rational:
$$f(x) = \frac{P(x)}{Q(x)}$$

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{\text{leading term of } P(x)}{\text{leading term of } Q(x)}$$

$$2f(x) = \frac{x^3}{-3x^3 + 2} \quad \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^3}{-3x^3} = -\frac{1}{3}$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x^3}{-3x^3} = -\frac{1}{3}$$

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{\text{leading term of } P(x)}{\text{leading term of } Q(x)}$$

$$3f(x) = \frac{-5x^3 + 2x - 4}{x^6 + 1} \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{-5x^3}{x^6} = \lim_{x \to +\infty} -\frac{5}{x^3} = -\frac{5}{+\infty} = 0$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{-5x^3}{x^6} = \lim_{x \to -\infty} -\frac{5}{x^3} = -\frac{5}{-\infty} = 0$$

❖ As a result, if f is rational

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{\text{leading term of } P(x)}{\text{leading term of } Q(x)}$$

$$= \begin{cases} k & if \deg(P) = \deg(Q) \\ 0 & if \deg(P) < \deg(Q) \\ \pm \infty & if \deg(P) > \deg(Q) \end{cases}$$

$$\mathbf{1}f(x) = \sqrt{x - 1}$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \sqrt{x} = \sqrt{+\infty} = +\infty$$

$$\lim_{x \to -\infty} f(x) = \mathbf{1}$$

$$2f(x) = \sqrt{x^2 - 1}$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \sqrt{x^2} = \lim_{x \to +\infty} |x| = |+\infty| = +\infty$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} |x| = |-\infty| = +\infty$$

$$3f(x) = \sqrt{x} + x$$

$$\lim_{x \to +\infty} f(x) = \sqrt{+\infty} + \infty = +\infty + \infty = +\infty$$

$$\lim_{x \to -\infty} f(x) = \nexists$$

$$4f(x) = \sqrt{x} - x$$

$$\lim_{x \to +\infty} f(x) = \sqrt{+\infty} - \infty = +\infty - \infty$$
 Rationalize

$$\lim_{x \to +\infty} \sqrt{x} - x \times \frac{\sqrt{x} + x}{\sqrt{x} + x} = \lim_{x \to +\infty} \frac{x - x^2}{\sqrt{x} + x} = \lim_{x \to +\infty} \frac{-x^2}{\sqrt{x} + x} = \lim_{x \to +\infty}$$

$$\lim_{x \to -\infty} f(x) = \mathbb{Z}$$

$$5f(x) = \sqrt{x^{+20} + 1} + +\infty$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \sqrt{x^2} + x = \lim_{x \to +\infty} |x| + x = \lim_{x \to +\infty} x + x = \lim_{x \to +\infty} 2x$$

$$=2(+\infty)=+\infty$$

$$5f(x) = \sqrt{x^{20} + 1} + 20$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \sqrt{x^2 + 1} + x \qquad \times \frac{\sqrt{x^2 + 1} - x}{\sqrt{x^2 + 1} - x} = \lim_{x \to -\infty} \frac{x^2 + 1 - x^2}{\sqrt{x^2 + 1} + x}$$

$$= \lim_{x \to -\infty} \frac{1}{\sqrt{x^2 + 1} + x} = \lim_{x \to -\infty} \frac{1}{\sqrt{x^2 + 1}} = \lim_{x \to -\infty} \frac{1}{x + x}$$

$$= \lim_{x \to -\infty} \frac{1}{2x} = \frac{1}{-\infty} = 0$$

Time for practice

Calculate the limits of f at $\pm \infty$.

1
$$f(x) = -3x^2 + 2x + 4$$
 $\lim_{x \to \pm \infty} f(x) = -\infty$

2
$$f(x) = \frac{1}{2}x^7 - 3x^5 + 2x^3 + 5 \lim_{x \to +\infty} f(x) = +\infty ; \lim_{x \to -\infty} f(x) = -\infty$$

3
$$f(x) = (x+1)(x^5+3x) \lim_{x \to \pm \infty} f(x) = +\infty$$

$$4 f(x) = \frac{1}{\sqrt{x+5}} \qquad \lim_{x \to +\infty} f(x) = 0 ; \lim_{x \to -\infty} f(x) = \nexists$$

5
$$f(x) = \frac{x^5 + 2x + 2}{x^3 + 2x}$$
 $\lim_{x \to \pm \infty} f(x) = +\infty$

6
$$f(x) = \frac{2x(x+3)}{(x+1)^2}$$
 $\lim_{x \to +\infty} f(x) = 2$